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Abstract. On the basis of computer simulations of the time-dependent Ginzburg–Landau model
including thermal noise effects, we evaluate the surface barrier against magnetic flux penetration
in type-II superconductors. We discuss several parameter dependencies of the first field for flux
penetration, which is estimated from the first peak position of the magnetization curve in the
presence of an external field slowly increasing over time. It is shown that the first penetration
field is a decreasing function of temperature and of the degree of sample shape deformation.
The surface barrier is also found to be suppressed by the surface irregularity on the scale of the
magnetic penetration depth.

It has been recognized that to gain insight into the magnetic properties of type-II
superconductors, such as the magnetic flux dynamics phenomena, hysteretic magnetic
response, and critical current, an intensive understanding of the surface barrier is
indispensable [1]. The surface barrier arises as a result of the competition between the
attractive force between a vortex inside the superconductor and its image outside, and the
repulsion between the vortex and the surface shielding current [2, 3]. In order to enable flux
to penetrate into a superconductor, the shielding current should be strong enough to pull the
flux away from its mirror image over a distance of the order of the coherence length. This
condition yields the first field for flux penetration, denoted byHp, which exceeds the lower
critical field,Hc1. For a perfect surface one getsHp ' Hc whereHc is the thermodynamic
field [2, 3]. On the other hand, in real samples the barrier is diminished by various causes,
and thusHp lies somewhere in between:Hc1 < Hp < Hc [1].

Recently, the properties of the irreversible state of high-Tc superconductors have been
found to be strongly influenced by the surface barrier. Indeed, Konczykowskiet al [4] have
demonstrated the dominant role of the surface barrier in the formation of the magnetization
properties of clean untwinned YBCO crystals at high temperatures. Other evidence for
the role of the surface barrier has been reported, including the observation of a crossover,
which separates the bulk and the surface barrier regimes for the magnetic relaxation rate
[5]. Moreover, Zeldovet al [6] have pointed out that the irreversible magnetic behaviour
at intermediate temperatures in Bi-based compounds is determined by the surface barrier,
whereas the low-temperature behaviour is due to the bulk pinning and the high-temperature
behaviour is due to the geometrical barrier induced by the demagnetization effect.

Surface barrier effects have been discussed so far by using the Bean–Livingston (BL)
model [2] and also extended BL models such as the Clem model [7], which are at a rather
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phenomenological level. In this paper, to complement the previous study, we evaluate
the surface barrier by using a different type of approach, namely the numerical approach
of the time-dependent Ginzburg–Landau (TDGL) equations [8, 9]. Here, simulating the
TDGL model with thermal noise effects, we examine the magnetic response of type-
II superconductors to a linearly increasing external magnetic field with time, and then
estimate the first field,Hp, for flux penetration. In particular, we discuss several parameter
dependencies ofHp, such as those on the temperature, the aspect ratio of the sample shape,
and the surface irregularity.

The TDGL equations with thermal noise effects used in the simulation are as follows
[8–10]:
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∂ψ

∂t
= − δF

δψ∗
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with kinetic coefficients0ψ = 2mD/h̄2 and0A = c2/σ , and the Helmholtz free energyF
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8π
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]
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where D ≡ −i h̄∇ − (e/c)A is the covariant derivative. Here,ψ(r, t) is the complex
order parameter at timet and positionr, andA(r, t) is the vector potential with the local
magnetic flux densityb(r, t) ≡∇×A. The other symbols have their usual meanings [11].
We work in the zero-scalar-potential gauge [8, 9]. The last terms of the r.h.s. of equations
(1) and (2),g andf , denote the thermal noise effects. These noise terms are characterized
[12] by 〈〈g〉〉 = 〈〈f〉〉 = 0, and

〈〈g∗(r′, t ′)g(r, t)〉〉 = 20−1
ψ kBT δ(r

′ − r)δ(t ′ − t) (4)

〈〈fi(r′, t ′)fj (r, t)〉〉 = 20−1
A kBT δ(r

′ − r)δ(t ′ − t)δij (5)

with all cross correlations being zero, where〈〈· · ·〉〉 denotes an average with respect to
the noise distribution, andfi is the ith component off . Under the assumption that
α(T ) = α(0)(T /Tc − 1) with two positive constantsα(0) and β in equation (3), the
coherence length and the magnetic penetration depth are given byξ(T ) = ξ(0)(1−T/Tc)−1/2

and λ(T ) = λ(0)(1 − T/Tc)−1/2, respectively, with the critical temperatureTc at zero
field. We also obtain three critical fields in units ofHc2(0): Hc2(T )/Hc2(0) = 1− T/Tc,
Hc1(T )/Hc2(0) = (ln κ/(2κ2))(1 − T/Tc), andHc(T )/Hc2(0) = ((1/(

√
2κ))(1 − T/Tc)

with the GL parameterκ ≡ λ(T )/ξ(T ) = λ(0)/ξ(0).
We here consider a superconducting rectangular sample which is assumed to be infinite

in the z-direction with a cross sectional areaLx × Ly in the x–y plane. The external
magnetic field,He(t), is applied to the system in thez-direction, and is slowly changing
with time t asHe(t) = γ (t/t0)Hc2(T ) with the variation rateγ and t0 ≡ πh̄/(96kBTc).
Moreover, neglecting all derivatives along thez-axis and also the demagnetization effects,
we reduce the problem to two dimensions. The present results, therefore, apply only to
bulk materials where fluctuations in thez-direction have been neglected.

In actual simulations the TDGL equations are transformed into the dimensionless
discretized equations on a two-dimensional lattice by introducing link variables for the
vector potential. In contrast with previous work [8, 9], we use here temperature-dependent
system sizes (for most cases,Lx = Ly = 256ξ(T )) to include the thermal effects
effectively, since the flux penetration processes are strongly affected by these effects. In
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Figure 1. The time variation of the magnetizationM(t) for Lx = Ly = 256ξ(T ) atT/Tc = 0.7,
shown by a solid line. The dotted line denotes the external fieldHe(t) in units ofHc2(0). Labels
a–d with arrows correspond to the panels of figure 2.

Figure 2. The time variation of the contour line of the order parameter amplitude|ψ(r, t)| at
t/t0 = 4350 (a), 4500 (b), 4700 (c), and 7000 (d) for the same parameter values as in figure 1.

the following simulations, we setκ = 4, and also take the lattice spacing and time step for
numerical calculations to be 0.5ξ(T ) and 0.0125t0, respectively. These values are chosen
for computational reasons, to obtain results efficiently within our computer availability. As
the initial state, we choose the zero-field-cooling state. Details of the computational method
can be found in our previous work [8, 9].

Firstly, we examine the process of penetration of the magnetic flux and/or vortices into
the sample, which is in a superconducting state in the absence of the external field att = 0.
In figure 1 we show the time variation of the magnetization,M(t), for Lx = Ly = 256ξ(T )
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atT = 0.7Tc andγ = 10−4, where the dotted line denotes the time-dependent external field
He(t). The magnetizationM(t) is defined as 4πM(t) = 〈B〉(t)−He(t), where the magnetic
induction 〈B〉(t) is obtained from the sample average of thez-component,bz(r, t), of the
local magnetic flux densityb(r, t). The resulting curve,−4πM(t), exhibits a few maxima,
which are not sharp for large values ofHe(t). In figure 2 we show the corresponding
time variation of contour lines of the order parameter amplitude|ψ(r, t)|. Calculating the
magnetic flux, we have confirmed that each definite circular pattern appearing in these
figures corresponds to a quantized magnetic vortex with one flux quantum [9]. From
these results we can see that the magnetic flux first penetrates into the superconducting
sample from the sample boundaries to form walls (figure 2(a)), and then the walls become
irregular (figure 2(b)) to break up into vortices (figure 2(c)), following the increase of the
applied field [9]. For further higher fields, irregular penetrating flux regions near the sample
boundaries continuously emerge and are the sources of vortex creations (figure 2(d)), and
simultaneously vortices diffuse towards the centre of the sample [9]. We have checked
that after each maximum of the−4πM(t) curve shown in figure 1 a sudden creation of
magnetic vortices from the irregular flux boundaries takes place. Similar behaviour has
been obtained by Bolechet al [13]. In the following discussion, the first penetration field
Hp(T ) is calculated from the first bending point ofM(t).

Figure 3. The temperature dependence of the first penetration fieldHp(T ) for Lx = Ly =
256ξ(T ) with (•) and without (◦) thermal noise effects. The upper critical fieldHc2(T ) and
the thermodynamic critical fieldHc(T ) are also shown for comparison, in units ofHc2(0).

Secondly, we study the temperature dependence of the surface barrier. In figure 3 we
show the first penetration fieldHp(T ) as a function of temperatureT for Lx = Ly =
256ξ(T ) and γ = 10−4. In this figure, for comparison, we also plotHp(T ) for the case
without thermal noise effects. It is shown thatHp(T ) is a decreasing function ofT , as
was discussed in many previous studies [1–3], and also thermal noise effects enhance the
flux penetration and thus lowerHp. Similar behaviour has been obtained for the case of
γ = 10−5. We should remark that in the present simulations we obtainHp(T ) > Hc(T ),
in contrast with the previous result,Hp(T ) 6 Hc(T ) [1–3]. A plausible reason for this
discrepancy might be the finiteness of our simulation systems. In fact, we have obtained
Hp(T )/Hc(T ) = 2.45 forLx = Ly = 256ξ(T ), 2.11 for 512ξ(T ), and 1.53 for 768ξ(T ) at
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T/Tc = 0.7 with thermal noise effects. These results indicate thatHp(T ) tends to decrease
with increasing system size. To confirm this, further detailed simulations with changed
parameter values are needed and are now under way.

Figure 4. The dependence on the aspect ratio,R ≡ Ly/Lx , of the first penetration fieldHp(T )
with Lx = 256ξ(T ) being fixed. The upper critical fieldHc2(T ) and the thermodynamic critical
field Hc(T ) are also shown for comparison, in units ofHc2(0).

Next, we study the effect of the aspect ratio,R ≡ Ly/Lx , on the surface barrier. In
figure 4 we show the first penetration fieldHp(T ) as a function of temperatureT atγ = 10−4

for R = 1, 0.5, 0.25, and 0.125, with Lx = 256ξ(T ) being fixed. A small aspect ratio
corresponds to a substantial degree of deformation of the sample shape. From these results,
Hp(T ) is found to be a decreasing function of the degree of sample shape deformation. This
behaviour is thought to be due to the collective interaction among nearby magnetic fields.
Moreover, we examine how the results change with the system size. We have determined
the ratio ofHp for R = 0.25 to Hp for R = 1 to be 0.746 for Lx = 256ξ(T ), 0.817
for 512ξ(T ), and 0.905 for 768ξ(T ) at T/Tc = 0.7. These results might indicate that
the effects of the aspect ratio on the surface barrier become less important with increasing
system size. However, these effects on the surface barrier have been less studied so far.
Further study is needed experimentally, theoretically, and computationally.

Finally, we study the effect of the surface irregularity on the surface barrier. The surface
irregularity is modelled as a surface defect, and is introduced such that the coefficientα

in the GL free energy (3) is set to be zero at the defect’s position. Here, 40 defects with
the sizeλ(T )× λ(T ) are randomly distributed on the sample boundaries for each value of
temperature, as is shown in figure 5. In figure 6 we show the first penetration fieldHp(T )

as a function of temperatureT for Lx = Ly = 256ξ(T ) andγ = 10−4 with and without
surface defects. We have checked that surface defects with the sizeξ(T ) × ξ(T ) have no
evident effects onHp(T ). The surface irregularity on the scale ofλ(T ) is thought to result
in new gates for the flux penetration and thus to weaken the surface barrier. These results
are in qualitative agreement with recent experimental data on high-Tc superconductors [4].

In conclusion, we have demonstrated several parameter dependencies of the surface
barrier against magnetic flux penetration on the basis of numerical calculation of the TDGL
equations with thermal noise effects. We have shown that the first penetration fieldHp(T )
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Figure 5. Defects randomly distributed on the sample boundaries, denoted by black squares
with the sizeλ(T )× λ(T ) for the 256ξ(T )× 256ξ(T ) system.

Figure 6. The first penetration fieldHp(T ) for Lx = Ly = 256ξ(T ) with (◦) and without (•)
surface defects. The upper critical fieldHc2(T ) and the thermodynamic critical fieldHc(T ) are
also shown for comparison, in units ofHc2(0).

is a decreasing function of both temperature and the degree of sample shape deformation.
The thermal noise effect is also shown to enhance the flux penetration. Moreover, surface
irregularities on the scale ofλ(T ) have been found to suppress the surface barrier and then
to lowerHp(T ), while surface defects on the scale ofξ(T ) have no evident effects onHp(T )
in the present simulations. The effects of the system size on these results have also been
studied a little. However, this study is at a primitive stage and thus the detailed discussion
of the problem will be presented elsewhere.

Here, we have restricted the present simulations to a study of the effect of the surface
barrier on the magnetic flux penetration process, neglecting thez-dependence of the problem
and also the demagnetization effect. Recent experiments and theoretical analyses have
revealed that the magnetic properties of high-Tc materials are affected by various features
[1], such as bulk pinning [4, 5], the geometrical barrier due to the demagnetization effect
[6], the bending of flux lines, and quantum tunnelling of point-like vortices [14]. Moreover,
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the asymmetry exhibited by the surface barrier between the flux entry and the flux exit
processes in the presence of a transport current has been pointed out [15]. The results
obtained here cannot be directly applied to these cases. However, the present study might
give a useful guide for discussion of the magnetic properties in such complicated situations.
These effects, as well as study of the magnetic hysteresis loop, will be discussed in future
work.
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